First sypersymmetric laser array

A team of University of Central Florida researchers has overcome a long-standing problem in laser science, and the findings could have applications in surgery, drilling and 3D laser mapping.

Advertisements



Using the principle of supersymmetry, they have developed the first supersymmetric laser array. Their findings were published recently in the journal Science.

Supersymmetry is a conjecture in physics that says every particle of matter, such as an electron, has one or more superpartners that is the same except for a precise difference in their momentum.

“This is the first demonstration of a supersymmetric laser array that is promising to meet the needs for high power integrated laser arrays with a high-quality beam emission,” said study co-author Mercedeh Khajavikhan, an associate professor of optics and photonics in UCF’s College of Optics and Photonics.

Khajavikhan lead the team that developed the laser array, which is comprised of rows of lasers and is able to produce large output power and high beam quality.

This is a first array that consistently generates high radiance, as previous designs have resulted in degraded beam quality.

Khajavikhan said that earlier work by Demetrios Christodoulides, a Pegasus professor of optics and photonics, Cobb Family Endowed Chair in the college and study co-author, suggested the use of supersymmetry in optics and her team has explored it further in its studies.

“However, it is only recently that my group managed to bring these ideas in actual laser settings, where such notions can be fruitfully used to address real problems in photonics,” she said.

The trick in her team’s laser arrays is spacing lasers beside each other using calculations that take into account supersymmetry.

She said this development is very important in many areas that a high-power integrated laser is needed.

“We foresee many applications of supersymmetric laser arrays in medicine, military, industry and communications, wherever there is a need for high power integrated laser arrays having a high beam quality,” Khajavikhan said.

One exciting application could be in the use of LIDAR, which uses lasers to survey and map 3D terrain and is used in fields such as self-driving cars, archaeology, forestry, atmospheric physics and more.

“LIDAR requires a high-power and high-beam quality laser,” Khajavikhan said. “Currently, because of the lack of this type of lasers in integrated form, they use other kinds of lasers. The supersymmetric laser provides an integrated high-power laser solution that also shows high beam quality.”

Co-authors of the study include Mohammad P. Hokmabadi, the study’s lead author and a postdoctoral associate in the College of Optics and Photonics; Nicholas S. Nye, a graduate research assistant in the college; and Ramy El-Ganainy, an associate professor at Michigan Technological University and a UCF alumni.

Khajavikhan received a doctorate in electrical engineering from the University of Minnesota and master’s and bachelor’s degrees in electronics from Amirkabir University of Technology in Iran. She joined UCF in 2012.

Story Source:

Materials provided by University of Central Florida. Original written by Robert Wells. Note: Content may be edited for style and length.

Please follow and like us:
0

Karachi Shipyard & Engineering Works Ltd (KSEW) Jobs 2019 for Deputy Project Director Latest

# Title Details
1 Jobs Location Pakistan
2 Published Date 24 Feb 2019 Sunday
3 Last Date to Apply
4 Newspaper Name Express

Karachi Shipyard & Engineering Works Ltd (KSEW) Jobs 2019 for Deputy Project Director Latest


If you are not seeing Newspaper Ad Then unblock adblocker.

Jobs by Location

Jobs by City




Please follow and like us:
0

PPL Jobs 2019 Pakistan Petroleum Limited Apply Online for Technicians Latest

# Title Details
1 Jobs Location Pakistan
2 Published Date 24 Feb 2019 Sunday
3 Last Date to Apply 06 Mar 2019 Wednesday
4 Newspaper Name Dawn

PPL Jobs 2019 Pakistan Petroleum Limited Apply Online for Technicians Latest

Vacancies / Positions:-

  • 04 Technician Shift (Process Plant / Compressor Station )
  • 04 Technician (Mechhanical)
  • 04 Technician (Electrical & Instrument)

Last Date to Apply:  March 06, 2019


If you are not seeing Newspaper Ad Then unblock adblocker.

Jobs by Location

Jobs by City




Please follow and like us:
0

PNSC Jobs 2019 Pakistan National Shipping Corporation Apply Online www.pnsc.com.pk Latest

# Title Details
1 Jobs Location Pakistan
2 Published Date 24 Feb 2019 Sunday
3 Last Date to Apply
4 Newspaper Name Dawn

PNSC Jobs 2019 Pakistan National Shipping Corporation Apply Online www.pnsc.com.pk Latest


If you are not seeing Newspaper Ad Then unblock adblocker.

Jobs by Location

Jobs by City




Please follow and like us:
0

Directed evolution builds nanoparticles

The 2018 Nobel Prize in Chemistry went to three scientists who developed the method that forever changed protein engineering: directed evolution. Mimicking natural evolution, directed evolution guides the synthesis of proteins with improved or new functions.

First, the original protein is mutated to create a collection of mutant protein variants. The protein variants that show improved or more desirable functions are selected. These selected proteins are then once more mutated to create another collection of protein variants for another round of selection. This cycle is repeated until a final, mutated protein is evolved with optimized performance compared to the original protein.

Now, scientists from the lab of Ardemis Boghossian at EPFL, have been able to use directed evolution to build not proteins, but synthetic nanoparticles. These nanoparticles are used as optical biosensors — tiny devices that use light to detect biological molecules in air, water, or blood. Optical biosensors are widely used in biological research, drug development, and medical diagnostics, such as real-time monitoring of insulin and glucose in diabetics.

“The beauty of directed evolution is that we can engineer a protein without even knowing how its structure is related to its function,” says Boghossian. “And we don’t even have this information for the vast, vast majority of proteins.”

Her group used directed evolution to modify the optoelectronic properties of DNA-wrapped single-walled carbon nanotubes (or, DNA-SWCNTs, as they are abbreviated), which are nano-sized tubes of carbon atoms that resemble rolled up sheets of graphene covered by DNA. When they detect their target, the DNA-SWCNTs emit an optical signal that can penetrate through complex biological fluids, like blood or urine.

General principle of the directed evolution approach applied to the nanoparticle DNA-SWCNT complexes. The starting complex is a DNA-SWCNT with a dim optical signal. This is evolved through directed evolution: (1) random mutation of the DNA sequence; (2) wrapping of the SWCNTs with the DNA and screening of the complex’s optical signal; (3) selection of the DNA-SWCNT complexes exhibiting an improved optical signal. After several cycles of evolution, we can evolve DNA-SWCNT complexes that show enhanced optical behavior. Credit: Benjamin Lambert (EPFL)

Using a directed evolution approach, Boghossian’s team was able to engineer new DNA-SWCNTs with optical signals that are increased by up to 56% — and they did it over only two evolution cycles.

“The majority of researchers in this field just screen large libraries of different materials in hopes of finding one with the properties they are looking for,” says Boghossian. “In optical nanosensors, we try to improve properties like selectivity, brightness, and sensitivity. By applying directed evolution, we provide researchers with a guided approach to engineering these nanosensors.”

The study shows that what is essentially a bioengineering technique can be used to more rationally tune the optoelectronic properties of certain nanomaterials. Boghossian explains: “Fields like materials science and physics are mostly preoccupied with defining material structure-function relationships, making materials that lack this information difficult to engineer. But this is a problem that nature solved billions of years ago — and, in recent decades, biologists have tackled it as well. I think our study shows that as materials scientists and physicists, we can still learn a few pragmatic lessons from biologists.”

Story Source:

Materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Content may be edited for style and length.

Please follow and like us:
0